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MOTION OF A SYSTEM OF SEISMIC SOURCES

OVER ICE ON A BODY OF WATER UNDER THE ACTION OF A PULSE

UDC 624.124:532:595L. A. Tkacheva

The vertical motion of a system of two identical seismic sources and a spring truck tractor on ice
under the action of a shock pulse from the seismic sources is studied to estimate the strength of ice.
It is shown that during the pulse time, the interaction of the masses of the seismic sources and the
tractor is small and the compressibility effect of the liquid can be ignored. Calculations show that for
the seismic sources, the dynamic load far exceeds the static load and for the tractor, the static load
is maximal.

Key words: pulse load, floating ice plate, structural damping, compressible and incompressible
liquids.

Geophysical work on the ice sheet of bodies of water is needed for oil prospecting in northern regions. The
effect of a point shock pulse on a floating ice sheet was considered in [1–4]. In the present paper, the vertical motion
of a system of masses (one of which is spring mounted) on ice under the action of a shock pulse is studied with
allowance for the bearing surface area. The object of the study is to determine the mass accelerations of the seismic
sources and tractor in order to assess the safety of operation of the geophysical equipment on a floating ice sheet.

Formulation of the Problem. The geophysical equipment consists of two identical seismic sources,
a spring tractor at identical distances from them, and a head tractor, which is assumed to be very remote and is
therefore not considered (Fig. 1). The masses of the seismic sources and tractor are equal to 4000 and 8000 kg,
respectively. Each seismic source is mounted on two skids 2 m long and 0.5 m wide, and the tractor is on skids
6.5 m long and 1 m wide. The seismic sources operate synchronously. The pulse time is t0 = 13.6 msec, after which
the oscillations of the spring-mounted tractor damp gradually. The acceleration of the seismic sources during the
pulse time is known from experiments on ground. The rigidity of the springs can be determined taking into account
that the deflection of the tractor under gravity is 0.2 m. It is assumed that the liquid is ideal and infinitely deep
and that the ice sheet is homogeneous and have constant thickness and infinite extension. The problem is solved
using the theory of thin plates with structural damping taken into account [5]. The problem is solved for the cases
of both compressible and incompressible liquids. The vertical motion of the system of sources and tractor on ice is
defined by the equations
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Fig. 1. Arrangement of the geophysical equipment.

Zj(t) = Wj(t), D = Eh3/[12(1 − ν2)],

p = −ρ(ϕt + gw), Δϕ − ϕtt/c2
0 = 0,

ϕz = wt (z = 0), ∇ϕ → 0, z → −∞.

Here w(x, y, t) are the displacements of the ice plate, α is the structural damping coefficient, D and h are the flexural
rigidity and thickness of the plate, E and ν are Young’s modulus and Poisson’s constant for ice, ρ1 and ρ are the
densities of ice and water, respectively, p is the hydrodynamic pressure, ϕ is the liquid velocity potential, c0 is the
sound velocity in water, g is the acceleration of gravity, F (x, y, t) is the effect of the seismic sources, M and Mb are
the masses of the seismic sources and tractor, S and Sb are the areas of the skids of the seismic sources and tractor,
kb is the rigidity of the tractor springs, Zj(t) is a function of displacements of the seismic sources, Zb(t) is a function
of s displacements of the tractor, Wj(t) and Wb(t) are functions of ice displacements under the seismic sources
and tractor, (xj , yj) and (xb, yb) are the horizontal coordinates of the centers of gravity of the seismic sources and
tractor, Z̈0(t) is the specified acceleration of the seismic sources during the pulse time, and Aj(x, y) and Ab(x, y) are
functions of the surface area of the sources and tractor:

Aj(x, y) =

{
1, (x, y) ∈ Dj,

0, (x, y) �∈ Dj,
Ab(x, y) =

{
1, (x, y) ∈ Db,

0, (x, y) �∈ Db;

Dj and Db are the areas occupied by the skids of the seismic sources and tractor respectively. The displacements of
the seismic sources and ice at their centers of gravity are set equal (the displacement of the seismic sources relative
to the ice surface is ignored):

Wj(t) = Zj(t) = w(xj , yj , t), Wb(t) = w(xb, yb, t). (2)

Zero initial conditions are specified, and at t < 0, the system is at rest. Once the functions Zj(t), Zb(t), and Wb(t)
are determined, the displacement of the ice plate, stresses, and shear forces can be found from Eqs. (1).

System of Integral Equations. The contact surface area between the skids and ice is important in
determining the motion of the seismic sources and tractor, and the shape of the contact area will be considered
circular. After the motion of the masses of the seismic sources and tractor is determined, the stress on ice can be
found taking into account the shape of the skids. Then, Eq. (1) becomes
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where Ãj(x, y) and Ãb(x, y) are circles of area S and Sb and radius R and Rb with centers at the points (xj , yj)
and (xb, yb).

To solve the problem, we use the Fourier transform over the space coordinates x and y and the Laplace
transform in time:
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Here ŵF (ξ, η, s), ϕ̂F (ξ, η, z, s), and p̂F (ξ, η, z, s) are the images of the functions w(x, y, t), ϕ(x, y, z, t), and
p(x, y, z, t).

From the equation of motion for the liquid, we obtain

∂2ϕ̂F

∂z2
−
(
ξ2 + η2 +

s2

c2
0

)
ϕ̂F = 0.

The solution of this equation subject to the condition that it damps as z → −∞ has the form

ϕ̂F (ξ, η, z, s) = C(ξ, η, s) eσz , σ =
√

ξ2 + η2 + s2/c2
0.

From the boundary conditions for z = 0, we have

sŵF = σϕ̂F (ξ, η, 0, t), ϕ̂F (ξ, η, 0, s) = sŵF /σ.

Hence,

pF = −ρ(s2/σ + g)ŵF .

The equation of motion for the plate (3) becomes

ρ1hs2ŵF + (1 + αs)D(ξ2 + η2)2ŵF = −ρ
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σ
+ gŵF

)

− MJ1(Rγ)
πγR
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j=1

ei(ξxj+ηyj)[s2Ẑj(s) + ˆ̈Z0(s)] − MbJ1(Rbγ)
πγRb

ei(ξxb+ηyb) s2Ẑb(s). (4)

Here γ =
√

ξ2 + η2, ξ = γ cos θ, η = γ sin θ, γ and θ are cylindrical coordinates in the plane (ξ, η), and J1 is a
Bessel function. Equation (4) can be written as

s2m(γ)ŵF + sd(γ)ŵF + c(γ)ŵF = f(γ, θ, s), (5)

where

m(γ) = ρ1h + ρ/σ, d(γ) = αDγ4, c(γ) = Dγ4 + ρg,

f(γ, θ, s) = −MJ1(Rγ)
πγR

2∑
j=1

eiγ(xj cos θ+yj sin θ)[s2Ẑj(s) + ˆ̈Z0(s)]

− MbJ1(Rbγ)
πγRb

s2Ẑb eiγ(xb cos θ+yb sin θ) .

The solution of Eq. (5) has the form

ŵF (ξ, η, s) = f(γ, θ, s)/K(γ, s),

K(γ, s) = D(1 + sα)γ4 + ρg + ρ1hs2 + ρs2/σ, σ =
√

γ2 + s2/c2
0

[K(γ, s) is the dispersion function for flexural-gravity waves in the floating elastic plate]. In the case of an incom-
pressible liquid,
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K(γ, s) = D(1 + sα)γ4 + ρg + ρ1hs2 + ρs2/γ.

Using the inverse Fourier transform, we obtain

ŵ(x, y, s) =
1
2π

∞∫
0

2π∫
0

e−iγ(x cos θ+y sin θ) ŵF (ξ, η, s)γ dγ dθ.

For the system of the sources and the tractor between them, arranged on the same line, we choose a coordinate
system with origin at the middle of the tractor and the Ox axis directed along the direction of motion of the system
(see Fig. 1). Then, (−L, 0) and (L, 0) are the coordinates of the seismic sources, where L is the distance between
the centers of the seismic sources and tractor. By virtue of symmetry, the displacements of the seismic sources are
identical: Z1(t) ≡ Z2(t) ≡ Z(t). Then, with allowance for (2), the motion of the seismic sources and tractor is
described by the system of equations

Ẑ(s) = − M

πR

∞∫
0

J1(Rγ)[1 + J0(2γL)][s2Ẑ(s) + ˆ̈Z0(s)]
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(6)

Mbs
2Ẑb + kb(Zb − Wb) = 0.

Solution for One Seismic Source. From the equation for one seismic source

Ẑ(1 + Ms2B0(s)) = −MB0(s)
ˆ̈Z0

(
B0(s) =

1
πR
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0

J1(Rγ) dγ

K(γ, s)

)
,

we obtain

Ẑ(s) = − ˆ̈Z0
MB0(s)

1 + Ms2B0(s)
. (7)

The function Z(t) describing the motion of the seismic source in time can be found using an inverse Laplace
transform. However, to determine the deflection of the ice plate from Eq. (1) and the stress in it, it is necessary to
find the acceleration of the seismic source Z̈(t). For the image of the acceleration, from (7) we obtain

ˆ̈Z(s) = − ˆ̈Z0F2(s), F2(s) =
Ms2B0(s)

1 + Ms2B0(s)
. (8)

Let us find the asymptotic form of the expression s2B0(s) as |s| → ∞. For this, we introduce the characteristic
length l related to the elastic forces, and the dimensionless variables

l =
(D

ρg

)1/4

, ζ = γl, R̄ =
R

l
, R̄b =

Rb

l
, L̄ =

L

l
, c̄0 =

c0t0
l

.

Then, the expression for s2B0(s) is written as

s2B0(s) =
1

πR̄
√

ρgD

∞∫
0

χ(ζ, s)J1(R̄ζ) dζ

χ(ζ, s)ζ4(1/s2 + α/s) + χ(ζ, s)(λ + 1/s2) + μ
,

λ = ρ1h/(ρg), μ = l/g, χ(ζ, s) =
√

ζ2 + s2/c̄2
0.

As |s| → ∞, we have s2B0(s) → C0s, where C0s = 1/(πλR̄2
√

ρgD ). In the case of an incompressible liquid, we
have

C0s =
1

πR̄
√

ρgD

∞∫
0

J1(R̄ζ)ζ dζ

ζλ + μ
.
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For the inversion of the Laplace transform, we write the function F2(s) as

F2(s) = sF1(s), F1(s) =
MsB0(s)

1 + Ms2B0(s)
.

The function F1(s) = C/s + O(|s|−2) as |s| → ∞. Here C = MC0s/(1 + MC0s). In the case of an incompressible
liquid, C = 0.6383, and for a compressible liquid, C = 0.8163. We denote the original of the function F1(s) by Q(t).
Then, the solution of Eq. (8) has the form

Z̈(t) = − d

dt

t∫
0

Q(t − τ)Z̈0(τ) dτ. (9)

Using the inverse Laplace transform, we obtain

Q(t) =
1
π

∞∫
0

Re [eiωt F1(iω)] dω. (10)

Inversion of the Laplace transform was performed numerically. The compressibility effect for flexural-gravity
waves is manifested only at high frequencies [1]; therefore, for frequencies smaller than 1 sec−1, the compressibility
was ignored. For small values of ω, the dispersion function has a zero located close to the imaginary axis and
numerical calculation of the integral B0(iω) is difficult. Writing the function 1/K(γ, s) as the sum of common
fractions

1
K(γ, s)

=
4∑

k=0

Ak

γ − γk

(γk are roots of the dispersion relation) and using the table integral
∞∫
0

xJ1(cx) dx

x + z
= −πz

2
[H−1(cz) − Y−1(cz)],

we obtain

B0(s) =
4∑

k=0

Akγk

2R̄
√

ρgD
[H−1(−R̄γk) − Y−1(−R̄γk)]

(H−1 and Y−1 are Struve and Bessel functions, respectively).
The calculations were performed for the following parameter values of ice and water: ρ1 = 900 kg/m3,

ρ = 1000 kg/m3, E = 5 · 109 N/m2, ν = 0.3, h = 0.5 m, α = 0.69 sec, and L = 10 m. Previously, it has been shown
[6, 7] that the viscoelastic model of ice provides the best fit to experimental data for α = (0.69 ± 0.067) sec. The
time dependence of the specified acceleration of the seismic source on ground under the action of the pulse is shown
in Fig. 2 by a solid curve.

According to the calculations, the asymptotic form of the integral B0(iω) is valid with adequate accuracy
(a difference is observed in the fourth decimal place) for high frequencies (ω > ω∗); for an incompressible liquid,
ω∗ = 2 · 108 sec−1, and for a compressible liquid, ω∗ = 2 · 109 sec−1. The interval [0, ω∗] was divided into segments
on which the real and imaginary parts of the function F1(iω) were approximated by polynomials for ω < 1 and
by polynomials in ascending and descending powers of order not higher than two for ω > 1. The approximation
error is small enough (a difference was observed in the fourth decimal place). For ω > ω∗, the function F1(iω) was
replaced by the asymptotic relation −iC/ω. The integral (10) was evaluated analytically using this approximation.

From the calculations, it follows that the compressibility effect on the function Q(t) is manifested only for
small times (t < t∗) and t∗ 	 t0; therefore, the compressibility effect of the liquid on the acceleration of the seismic
source is small. In Fig. 3, the time dependence of the acceleration of a single seismic source on ice is shown by a
dashed curve for the case of a compressible liquid and by a dotted curve in the case of an incompressible liquid.
From Fig. 3, it is evident that the curves almost coincide; therefore, for the system of two seismic sources and a
tractor, the calculations were performed for the case of an incompressible liquid.

Solution for a System of Two Seismic Sources and a Tractor. Using the Laplace transform in
dimensionless variables, from system (6) we obtain the system of equations
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Fig. 2. Acceleration of the seismic source versus time: the solid curve refers to a single seismic
source on ground; the dashed curve refers to the case where one of the seismic sources of the system
is on ice.
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Fig. 3. Acceleration of seismic sources on ice versus time: the solid curve refers to the system of
two seismic sources and a tractor; the dashed curve refers to a single seismic source for the case
of a compressible liquid; and the dotted curve refers to a single seismic source for the case of an
incompressible liquid.

A

(
Ẑ

Ẑb

)
= − ˆ̈Z0M

(
B0s + B2

2B1s

)
,

where

A =

(
1 + Ms2(B0s + B2) Mbs

2B1b

2Ms2B1s 1 + Mbs
2/kb + Mbs

2B0b

)
,

B0s(s) = I0(R̄, s), B0b(s) = I0(R̄b, s), B1s(s) = I1(R̄, s), B1b(s) = I1(R̄b, s), B2(s) = I2(R̄, s),

I0(R, s) =
1

πR
√

ρgD

∞∫
0

J1(Rζ) dζ

K̃(ζ, s)
, Ij(R, s) =

1
πR

√
ρgD

∞∫
0

J1(Rζ)J0(jL̄ζ) dζ

K̃(ζ, s)
,

K̃(ζ, s) = ζ4(1 + αs) + 1 + λs2 + μs2/ζ.
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For the images of the accelerations, this system is written as

A

( ˆ̈Z
ˆ̈Zb

)
= − ˆ̈Z0Ms2

(
B0s + B2

2B1s

)
. (11)

Solving system (11), we find the images of the accelerations of the seismic sources and tractor, and then, using the
inverse Laplace transform, we find the time dependence of the accelerations.

The solution of system (11) has the form

ˆ̈Z(s) = − ˆ̈Z0G(s), ˆ̈Zb(s) = − ˆ̈Z0Gb(s),

G(s) =
Ms2(B0s + B2)(1 + Mbs

2/kb + Mbs
2B0b) − 2MMbs

4B1sB1b

[1 + Ms2(B0s + B2)](1 + Mbs2/kb + Mbs2B0b) − 2MMbs4B1sB1b
,

Gb(s) =
2Ms2B1s

[1 + Ms2(B0s + B2)](1 + Mbs2/kb + Mbs2B0b) − 2MMbs4B1sB1b
.

We find the asymptotic forms of the integrals as |s| → ∞: s2B1s → C1s, s2B2 → C2, and s2B1b → C1b, where

C1s =
1

πR̄
√

ρgD

∞∫
0

J1(R̄ζ)J0(L̄ζ)ζ dζ

ζλ + μ
, C2 =

1
πR̄

√
ρgD

∞∫
0

J1(R̄ζ)J0(2L̄ζ)ζ dζ

ζλ + μ
,

C1b =
1

πR̄b

√
ρgD

∞∫
0

J1(R̄bζ)J0(L̄ζ)ζ dζ

ζλ + μ
.

Finally, we obtain G(s) → C1 and C1 = 0.6382, i.e., the constant is almost the same as for a single seismic source,
and s2Gb(s) → Cb and Cb = 0.022 36.

The acceleration of the seismic sources for the system is found, as in the case of a single seismic source, from
formulas (9), (10), and the acceleration of the tractor is determined from the expressions

Z̈b(t) = −
t∫

0

Qb(t − τ)Z̈0(τ) dτ, Qb(t) =
1
π

∞∫
0

Re [eiωt Gb(iω)] dω.

We note that system (11) has poles in the left half-plane near the imaginary axis and the values ±iω0, where
ω0 =

√
50 is the eigenfrequency of the spring-mounted tractor. The presence of structural damping and spatial

energy dissipation shifts the poles to the left half-plane. For the system considered, the eigenfrequency is found using
the argument principle ω∗ = 7.011 49 + 0.013 097i. In the neighborhood of the eigenfrequency, the functions G(iω)
and Gb(iω) undergo sudden changes. The inversion of the Laplace transform was performed in the same way as
for a single seismic source, with the only difference that for the approximation near the eigenfrequency, instead of
negative powers, we used functions of the form

ω

(ω − ωr)2 + ω2
i

,
1

(ω − ωr)2 + ω2
i

,

where ωr and ωi are the real and imaginary parts of the eigenfrequency ω∗.
To estimate the strength of ice, it is necessary to know the maximum forces acting on the ice sheet. In

the neighborhood of the seismic source, the maximum forces are observed during the pulse time. The natural
oscillations of the seismic sources are much smaller than the oscillations of the tractor. In Fig. 3, the solid curve
shows the time dependence of the acceleration of the seismic sources for the system (the dashed and dotted curves
refer to a single seismic source for the cases of a compressible and an incompressible liquid, respectively). As is
evident from Fig. 3, all curves almost coincide. Figure 2 gives the time dependences of the specified acceleration
of a single seismic source on ground (solid curve) and the resultant acceleration Z̈s(t) = Z̈0(t) + Z̈(t) of a seismic
source on ice under the action of the system (dashed curve). From Figs. 2 and 3, it follows that for the calculation of
the maximum dynamic stresses in ice, the interaction of the seismic sources and tractor can be ignored at distances
between them of the order of 10 m.
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Fig. 4. Acceleration of the tractor versus time.

Figure 4 gives a curve of the acceleration of the tractor versus time. It is evident that the pulse of the seismic
sources excites natural oscillations of the spring-mounted tractor. These oscillations damp weakly enough but their
amplitudes are small.

The results show that for the seismic sources, the dynamic loads far exceed the static loads, and for the
tractor, the static loads are the maximal ones.
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